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ABSTRACT 

Digital images of suspended particles in aquatic 

systems can reveal abundances, size spectra, and 

biomass distributions of planktonic organisms and 

non-living particles.  Modern imaging systems are 

capable of recording the contents of defined volumes 

of water at high rates. In response to the need to 

analyze large image datasets, image analysis software 

and hardware are emerging as powerful tools for 

identifying the contents of images. Morphology 

combined with intrinsic image features can be used to 

identify phytoplankton and zooplankton organisms to 

genus in many cases. Moreover, many harmful algal 

species can be tentatively identified by morphology, 

providing potential sentinel early-warning systems for 

harmful blooms in coastal waters.  Systems could be 

imagined that would alert experts to the presence of 

unknown biodiversity, indicative of new or invasive 

species.  Size spectra of non-living particles and 

marine snow can be used to calculate vertical flux of 

material in the oceans.  Many towed, moored, and 

drifting imaging systems have been developed in 

recent years for these purposes.  These sensor systems 

are relatively complex compared to many physical 

and chemical sensors.  They have high power 

requirements for illumination light sources, optical 

detectors, and computation, and require high 

bandwidth and/or data storage for the digital images 

themselves.  High-powered image analysis and 

classification algorithms are needed to convert the 

high volume of digital image data to significant 

knowledge about the distributions and size spectra of 

the particles/organisms.  We believe this technology 

will be important for monitoring ocean health in the 

future, and significant development effort is needed to 

make these systems more practical and robust for the 

coming ocean observing systems.  This has been the 

focus of a recently-formed SCOR (Scientific 

Committee on Oceanic Research) Working Group 

(WG 130). This white paper will describe the state-of-

the-art and indicate best avenues for rapid, efficient 

development of the technology with specific 

application for ocean observing. 

1. INTRODUCTION 

Plankton form the base of the marine food chain; link 

the atmosphere and deep ocean elemental fluxes, 

processes, and cycles; and can cause invasions and 

blooms that are harmful to marine ecosystems and 

humans.  Plankton are intimately associated with the 

biochemistry of the ocean and can act as sentinel 

organisms as ocean properties, such as temperature, 

acidity, and chemical composition, change over time. 

As human population increases and environmental 

pressures reach the global level, the response and 

health of ocean ecosystems will become more critical 
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to the sustainability of Earth.  Historically, ocean 

observing systems have monitored physical and 

chemical properties, with biological measurements 

limited to simple proxies such as turbidity and 

chlorophyll fluorescence. Current and future ocean 

observing systems will need to monitor plankton 

communities. 

Monitoring plankton is challenging. Communities are 

diverse and dynamic.  Populations at a particular 

location come and go on short time intervals.  

Populations form patches at multiple scales and in 

three dimensions due to stratification, shear, and 

advection, as well as growth, grazing, and sinking. 

Plankton imaging and analysis systems have been 

developed to identify and enumerate living (plankton) 

and non-living particles in natural waters [1].   Digital 

image data can be analyzed to reveal abundances, size 

spectra, and biomass distributions of planktonic 

organisms as well as non-living particles. Detrital 

aggregates, or marine snow, are composed of living 

and non-living particle matter and play important 

roles in the time-variable export, regeneration and 

deep-water delivery of carbon and nitrogen.  In-situ 

particle and plankton imaging and analysis systems 

provide a technique for examining the size spectra of 

these fragile and patchy aggregates, and facilitate the 

quantitative examination of aggregate shape, sinking 

rate and composition over large ocean areas [2], [3], 

[4], [5] and [6]. 

In many cases, abundance and taxonomic information 

is needed at the genus or species level.  The 

zooplankter Calanus, for example, is an oil-rich 

copepod and its dense aggregations form a key food 

source for migrating baleen whales.  Certain 

dinoflagellate species produce potent neurotoxins that 

can accumulate in shellfish and sicken or kill fish, 

marine mammals, and humans when eaten.  Ideally, 

automated instruments would be able to recognize 

specific types of particles and organisms at fine 

taxonomic resolution, and under different 

environmental conditions, from oligotrophic blue 

waters to hypereutrophic coastal waters.  Recognition 

of phytoplankton (e.g. [7], Fig. 1), zooplankton [8 and 

9]), and ichthyoplankton to the family, or even genus 

level is currently possible in many cases  [10].  

Recognition at higher levels (e.g. functional groups), 

combined with morphometric features to estimate 

biomass, is useful for food web and ecosystem 

modeling [11 and 12]. 

2. STATE OF THE ART 

Planktonic organisms smaller than about 20 µm 

(protists and prokaryotes) generally have simple 

shapes (e.g. round, oblong, or filamentous) that are 

not useful to discriminate taxa.  For larger planktonic 

organisms, morphology is the traditional taxonomic 

descriptor with greater discriminating power.  

Morphology can be captured in digital images.  Rapid 

advances are being made in electro-optical 

technology, resulting in new and better ways of 

illuminating, detecting, and imaging plankton in situ.  

Prototype or commercially available high-resolution 

imaging and analysis systems now exist that detect 

plankton across a wide range of size scales [13], [14] 

and [15].  The hardware technology of these 

instruments is maturing. 

Data analysis and software systems are not as mature 

as the hardware technology for plankton imaging.  

Typically, images are collected and then either stored 

or transmitted with minimal real-time analysis.  Image 

collections are subsequently analyzed for abundances, 

particle/organism size, and identification.  

Automatically discriminating types of organisms from 

images is challenging.  Small differences in 

illumination can yield large differences in image 

quality, so images taken from different instruments 

are difficult to compare quantitatively.  Orientation of 

the organism in the image can induce large 

differences in the imaged structure.  In the typical 

development path, experts classify a subset of images 

of organisms into classes that can be morphotypes 

and/or taxonomic categories.  This set of expert-

classified images forms a training set against which 

classification algorithms can be developed and tested.  

A full classifier scheme must include a number of 

elements: the training set; image analysis methods 

such as image correction, segmentation and feature 

extraction; and a classification algorithm, such as 

neural network, support vector machine, or decision 

tree; or an ensemble of algorithms. Independent 

quantification of error rates is also desirable for many 

applications.  General training sets of expert-classified 

plankton images may not be practical since previous 

work suggests they must be different for differing 

imaging systems, and must be specific to a certain 

plankton community composition, or set of target 

organisms encountered.  It has been shown that 

taxonomic experts are not unanimous, even when 

considering images of organisms with relatively 

distinct morphology [16].  The state of the art for 

automated image classifiers for a 10 – 30 class 

problem is 70 – 80% accuracy [17]. This is 

approaching the level of agreement among human 

experts.  Bias due to errors in classification can be 

statistically  corrected  if  the  prior probabilities of 

the occurrences of the types are known [18]. A 

carefully collected expert-derived training set can 

provide these prior probabilities.  Misclassification 

may also be reduced by considering results from 

multiple classifier approaches [9], or optimizing  class



 

 

 

 

Figure 1. Example images and automated classification results for 22 categories identified from Imaging 

FlowCytobot observations in Woods Hole Harbor.  Most categories are phytoplankton taxa at the genus 

level: Asterionellopsis spp. (A); Chaetoceros spp. (B); Cylindrotheca spp. (C); Ceratulina spp. plus the 

morphologically similar species of Dactyliosolen such as D. fragilissimus (D); other species of 

Dactyliosolen morphologically similar to D. blavyanus (E); Dinobryon spp. (F); Ditylum spp (G); Euglena 

spp. plus other euglenoids (H); Guinardia spp. (I); Licmophora spp. (J); Phaeocystis spp. (K); 

Pleurosigma spp. (L); Pseudonitzschia spp. (M); Rhizosolenia spp. and rare cases of Proboscia spp. (N); 

Skeletonema spp (O); Thalassiosira spp. and similar centric diatoms (P).  The remaining categories are 

mixtures of morphologically similar particles and cell types: ciliates (Q); detritus (R); dinoflagellates > ~ 

Reproduced from Sosik and Olson (2007). 

 



 

 

selection (Fig. 2 and [19]). More work  on  handling 

the errors in classification, and on tools and protocols 

for creating appropriate and unbiased training sets is 

needed. 

3. INTEGRATION TO OCEAN OBSERVING 

SYSTEMS 

Ocean observing systems must include plankton 

imaging instruments. These instruments have proven 

powerful in many biological oceanographic 

applications.  They have been used for phytoplankton, 

zooplankton, marine snow particles, and metazoans 

including invertebrates and eggs, larvae, and adults of 

fish.  Recent progress with plankton imaging 

instruments and associated analysis software has been 

reviewed [1] and [20]. Some instruments view an 

illuminated volume of relatively undisturbed water, 

while others pump water into a defined view area 

(imaging-in-flow).  Instruments have been deployed 

from ships, either in towed, or vertical profiling modes.  

They have been deployed on remotely operated 

vehicles (ROVs), fixed moorings, Lagrangian floats, 

and autonomous underwater vehicles (AUVs).  These 

diverse platforms, all capable of accommodating 

plankton imaging and analysis instruments, will be 

important components of future ocean observing 

systems. 

Plankton imaging and analysis instruments are 

complex compared to many marine optical sensors 

(e.g. fluorometers and turbidity meters), but they 

provide a more direct measure of plankton (and other 

particulate material), and much more morphological 

and taxonomic information.  There are a variety of 

optical sensors that measure proxies of plankton or 

particle load, such as light scattering, beam attenuation 

(transmittance), and chlorophyll fluorescence.  

Acoustic sensors can measure sonic backscattering 

from plankton and fish.  Direct imaging systems 

deployed in strategic ways within ocean observing 

systems can serve to validate and expand interpretation 

of data from proxy sensors, which are typically smaller 

in size, cost, and power demand and thus can be 

deployed more widely in space and time.  New low-

power digital holographic systems [21] and [22] are 

being integrated into oceanic profiling floats creating 

the potential for remote sampling of plankton taxa 

throughout the world ocean. 

Many harmful algal species can be identified by 

morphology, so cell imaging has the potential to 

provide sentinel early-warning systems for harmful 

blooms in coastal waters [23].  Often the critical 

abundance of a HAB species can be very low (less than 

10 individuals per cubic meter), making it difficult to 

collect sufficient specimens for training a classifier. 

4. CHALLENGES/FUTURE 

There are several hardware challenges with integrating 

plankton imaging instruments into ocean observing 

systems.  The development of compact in-situ optical 

sensors capable of discriminating target particles 

against a high background of non-target particles 

suspended in the water column is one of the most 

demanding tasks in coastal regions. In the oceanic 

realm, where phyto- and zooplankton densities are 

usually low, the challenge is to synoptically observe a 

large volume of water with a sufficiently broad depth 

of focus, rather than scanning small volumes over time. 

In either case, sensors need to resolve a wide plankton 

size spectrum, from microbes to large crustaceans and 

fish larvae.  The use of spatial filters and other optical 

signal processors such as those suggested by [24] may 

help to achieve such capabilities.  In current systems 

illumination, camera, onboard logic, and data storage 

consume significant power compared to other simpler 

in-situ instruments.  Engineering to reduce power 

consumption will be an ongoing effort. 

Coccolithophorids, a particular group of 

nanophytoplankton, produce carbonate shells with 

particular birefringence properties.  These organisms 

may be particularly susceptible to ocean acidification.  

Imaging of birefringence patterns can distinguish these 

cells (Fig. 3) and it is possible to imagine in situ 

instruments optimized to detect and monitor 

populations of coccolithophorids. 

Like all optical instruments (indeed, virtually all in-situ 

sensors), surface biofouling can degrade performance 

during long-term deployments.  These problems are 

being addressed by placing copper sources near the 

optical surfaces, mechanical shutters, or cleaning 

mechanisms.  Optimal design issues include whether to 

put more computer logic closer to the imager for 

“smart” image digitization, or more removed from the 

sensor for post-acquisition processing.  Placing 

computer logic near the sensor is needed, for example, 

to compress the images for efficient storage and 

transmission.  In a sentinel system for harmful algae, it 

might be necessary for recognition of target species to 

be done at the sensor in real-time.  Full real-time image 

recognition for complex planktonic communities on a 

remote platform is a primary goal for hardware and 

software development. Progress has been made in real-

time recognition of fish eggs from natural waters [25]. 

Continued work to



 

 

 

 

 

Figure 2: Images of mesozooplankton obtained 

using a commercial scanner and extracted with 

ZooImage 

(http://www.sciviews.org/zooimage/index.html). 

Bubble (A), Scratch (B), Shadow (C), Debris (D), 

Diatom (E), Fiber (F), Marine Snow (G), Other 

Phytoplankton (H), Calanoida Dorsal I (I), 

Calanoida Dorsal II (J), Calanoida Dorsal III 

(K), Calanoida Lateral (L), Eucalanidae (M), 

Temoridae (N), Oithonidae (O), Miraciidae (P), 

Corycaeidae (Q), Oncaeidae (R), Poicilo Lateral 

(S), Sapphirinidae (T), Annelida (U), Cirripeda 

(V), Cladocera (W), Decapoda Miscelaneus (X), 

Decapoda Zoea Dorsal (Y), Decapoda Zoea 

Lateral (Z), Malacostracea Bulky (AA), 

Elongated Malacostraca (AB), Malacostraca 

Larvae (AC), Cnidaria (AD), Appendicularia 

(AE), Chaetognatha (AF), Elongated Egg (AG), 

Round Egg (AH), Protista (AI), Gastropoda (AJ), 

Pisces (AK). Graphical representation of different 

class accepted mergers by the end-user to 

improve classification. Reproduced from 

Fernandes et al (2008) [19] 
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Figure 3. Coccolithophores are calcifying algae found throughout the world ocean which have great 

biogeochemical relevance due to their calcium carbonate coccoliths which contribute 25% of all marine 

sediments. Automated means to define and enumerate them are critical.  A) Microscopic birefringence 

image of plated coccolithophore (1) and detached coccoliths (2) in seawater sample from the Gulf of 

Maine, viewed under cross-polarized light. Plated coccolithophores appear as round groups of white dots 

against a dark field whereas individual coccoliths appear as groups of four symmetric dots in this image.  

Scale bar is 5µm.  B) Results of classification algorithm CCC (free coccoliths, plated coccolithophores and 

aggregates of coccoliths), which identifies and enumerates free coccoliths, plated coccolithophores and 

aggregates of coccoliths based on their distinct birefringence patterns.  A complete description of  the 

algorithm will be published elsewhere. 

identify features and create improved classification 

algorithms is needed.  It has been suggested that a 

community effort of open source software development 

is the best way to make progress in this area (RAPID: 

Research of Automated Plankton Identification [1]).  

Examples of such software development are the 

Plankton Analysis System (PAS) and the Plankton 

Interactive Classification Tool (PICT) being developed 

at the University of Massachusetts Amherst [26].  PAS 

is a web-application that provides the functionality for 

experts to upload their images and algorithms, process 

images, hand-label exemplars, train classifiers and use 

those classifiers to automatically label new images. 

Zoo/Phytoimage has been successfully employed in a 

number of studies [12] and [27] as tool for automatic 

identification of scanned meso- and macrozooplankton 

images. More recently, a plugin has been developed to 

handle phyto- and microzooplankton images generated 

by the FlowCAM (Flow Cytometer And Microscope). 

An international SCOR working group is currently 

addressing the future development needs, such as 

standardization and specifications, of automated visual 

plankton identification (http://www.scor-wg130.net/). 

This attention to specifying comparable data sets and 

quality control methods is essential for plankton 

imaging to be incorporated into large scale ocean 

observing systems. 

Ocean observing systems of the future will include 

plankton imaging and analysis instruments to monitor 

diversity and alert experts to unexpected, new, or 

invasive, taxa. They will be part of coastal sentinel 

systems providing early warning of harmful blooms.  

They will monitor the structure and health of marine 

food webs and provide insights into the productivity of 

marine ecosystems.  They will help constrain 

particulate carbon fluxes along onshore-offshore 

gradients and vertical particle flux in the open ocean.  

Plankton imaging and analysis instruments will be key 

components of future coastal and oceanic ocean 

observing systems in their critical role of monitoring 

the health of marine ecosystems. A better 

understanding of the dynamics of ocean life will allow 

more rational management policies designed to protect 

the ocean and its life and, ultimately, ours. 
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