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1. ABSTRACT 

There are many challenges in blending historical and 

modern observations of sea surface temperature (SST) 

into homogenous gridded data sets suitable for use in 

climate research. Many of these problems can be 

avoided if proper choices are made during design and 

deployment phases of new instrumentation and 

observing systems, as specified in the Global Climate 

Observing System (GCOS) climate monitoring 

principles 

(http://www.wmo.int/pages/prog/gcos/documents/GCO

S_Climate_Monitoring_Principles.pdf ). 

 

2. INTRODUCTION 

Sea surface temperature (SST) is one of the most 

important physical variables in the arena of climate 

change. The large thermal inertia of the surface ocean 

(as compared to the land or the atmosphere) makes SST 

a particularly suitable parameter for monitoring changes 

in the state of the climate system, for predicting 

seasonal-to-interannual climate variability, and for 

verifying projections of longer-term climate change. In 

order to project climate trends into the future, we need 

to know and understand their history. This task, in turn, 

requires observational samples long enough for secular 

trends and multi-decadal variability to be identifiable in 

the presence of the very energetic background of shorter 

period variability. Historical (century or longer) data 

sets of SST are needed for training coupled models for 

seasonal-to-interannual climate forecasts [1] and for 

verifying or constraining century-long climate 

projections [2]. Historical SST data sets are also 

essential for atmospheric reanalyses (e.g. [3] and [4]) 

and model-based studies of climate variability. They 

also play a major role in the calibration of 

paleoceanographic records, thus contributing to multi-

century and millennial climate reconstructions (e.g. [5] 

and [6]). 

 

For these tasks, the quality of information about past 

SST variations is almost as important as the quality of 

modern observations. The historical-SST community 

strives to make the best use of modern SST observations 

to improve analyses of the past. Here we summarise the 

progress and problems in this area in the last decade, 

since the OceanObs’99 review of SST analyses [7]. 

 

Most historical SST observations were extracted from 

the logbooks of ships, with buoy measurements and 
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satellite data becoming a significant portion of the data 

set in the 1980s. The ultimate collection of in situ 

surface ocean data is the International Comprehensive 

Ocean-Atmosphere Data Set (ICOADS, [8, 9 and 10]). 

Data coverage prior to the second half of the nineteenth 

century is extremely poor (with little or no SST data 

prior to 1800), so only the period after 1850 has been 

used for climate analyses so far. 

 

Most climate research uses require spatially complete 

representation of SST on regular grids. These “gridded 

analyses” of historical SST depend as much on their 

“analysis” method, i.e. how missing data are inferred 

and how existing data are smoothed, as on the 

underlying set of observations, their quality control 

(QC) and bias correction procedures. The much-

improved sampling of SST in the last ten years by buoys 

and satellites has resulted not only in very good data for 

the last decade, but also in some qualitative 

improvements for the analysis of earlier data. Data 

abundance has made it possible to better identify and 

correct platform-specific systematic biases. It has also 

become possible to refine estimates of observational 

error covariance. This process was helped tremendously 

by the synergy created by the Group for High 

Resolution SST (formerly the GODAE (Global Ocean 

Data Assimilation Experiment) High Resolution Pilot 

Project, GHRSST-PP, see [11]). 

 

In the following sections, we outline the main problems 

and progress in the recent development of century-scale 

gridded SST analyses, discuss ways to avoid these 

problems in the future and make recommendations that, 

if implemented, would result in a greatly improved in 

situ observing system. 

 

3. PROBLEMS AND PROGRESS 

3.1.  Systematic biases and their correction 

The historical database of SST observations contains 

both slowly and rapidly varying relative biases arising 

from changes in instrumentation and data sources. 

These relative biases are of comparable size to climate 

variations, so they must be corrected. The need for bias 

adjustments is well known and a number of adjustments 

have been developed (e.g. [12]). Uncertainties in SST 

bias adjustments have also been estimated in recent 

years [13], [14] and [15]. This is a large component of 

the total uncertainty in historical SST variations. 

Reducing this uncertainty is particularly important, as it 

tends to be correlated in space and time, and therefore is 

often not reduced by averaging. On a global average, 

the bias adjustment uncertainty peaks in the late 1930s 

at around 0.08C, with local values of roughly 0.05-

0.2°C. Reducing this uncertainty would greatly improve 

historical gridded analyses. However, this is hampered 

by inadequate metadata. 

 

In the mid-nineteenth century, semi-insulated wooden 

buckets were used on ships to collect water samples, but 

by the early twentieth century, the majority of SST 

measurements were made using uninsulated canvas 

buckets, which tended to lose heat via evaporation. 

These were gradually phased out and typically replaced 

by measurements of the temperature of engine room 

intake (ERI) cooling water, or observations using better-

insulated rubber buckets (Fig. 1, bottom panel). ERI 

measurements tend to be warm relative to 

measurements made using canvas buckets, as do those 

from insulated buckets. Each observing country 

switched from using canvas buckets to ERI or insulated 

buckets at different times, introducing temporal and 

geographical variations into the bias in the SST record 

[16]. Reference [17] gives more detail about Voluntary 

Observing Ship (VOS) measurements. 

 

 

Figure 1. Top: global SST anomaly series (°C, relative 

to 1961-90 average), 1920-2006, from: uncorrected 

data (blue); HadSST2 (Hadley Sea Surface 

Temperature) (red,[14]); a provisional series corrected 

for all known  inhomogeneities throughout the record 

(green, [16]); drifting buoys (orange) and ships (cyan). 

Middle: estimated bias in global average SST (°C, 

[16]). Bottom: percentage contribution to the global 

average of bucket (black), engine room intake (green) 

and buoy (red) measurements. 

More recently, manual shipboard observations have 

been augmented by automatic measurements made by 

drifting and moored buoys (red curve in the bottom 

panel of Fig. 1). Drifting buoy design was standardised 

around 1993 and their collective measurements appear 

to have been stable since then. However, relative to 

shipboard observations, drifting buoy SST 

measurements tend to be cooler (Fig. 1, top panel). 

Since the mid 1980s, the mean ship-buoy SST 

difference is roughly 0.14°C. The increase in reliance on 

drifting buoy measurements of SST and the coincident 

decline in the contribution to the database of ship-borne 



  

observations has led to a further temporally and 

geographically varying bias in the SST record. 

Accounting for this new bias is also important. 

However, since they provide a stable subset of data 

from 1993 onwards, drifting buoys can be used to better 

understand and correct historical ship observations. 

Moored buoys from different nations have relative 

biases, but geographical coverage is limited. Other 

sources of in situ SST data make a relatively minor 

contribution to the record and are not considered in this 

section (but see Sect. 4.1 for further discussion). 

Since the early 1980s, satellites have been retrieving a 

wealth of SST data. Like in situ data, satellite 

observations can suffer from biases geographically, 

temporally, and both within the lifetime of an individual 

sensor and between sensors. Combining in situ and 

satellite observations is additionally complicated both 

by the complex nature of the surface ocean and that 

every sensor, satellite and in situ, is measuring a 

different component of it. (More about satellite 

retrievals of SST can be found in [11]). However, stable 

sets of retrievals, such as from the Along Track 

Scanning Radiometer (ATSR) series or the Pathfinder 

reanalysis of Advanced Very High Resolution 

Radiometer (AVHRR), help us to better interpret the in 

situ record. The reverse is also true: extensive use is 

made of drifting buoy observations to calibrate or 

validate satellite retrievals. In addition, combining SST 

retrievals from different satellite instruments can further 

reduce biases (see e.g. [18]). 

 

The AVHRR Pathfinder program ([19] and [20]) uses a 

multi-step method to minimize spurious trends and 

maximize cross-satellite homogeneity. Radiances are 

converted to brightness temperatures based on each 

sensor’s operating temperature. The calculation of SST 

from these brightness temperatures is based on 

regression to in situ observations, which further ensures 

consistency across the transition from one satellite to the 

next. 

 

3.2. Sampling and measurement uncertainties 

In addition to systematic biases, all data types are 

affected by uncertainties due to measurement errors and 

under-sampling of variability. Measurement 

uncertainties in ship SST observations have been 

estimated by comparing pairs of nearby observations 

(Fig. 2a) [21]. The total variance of observations within 

each bin (Fig. 2b) should exceed measurement and 

sampling error variance by the real variance of the field 

there. High resolution satellite data (e.g. Pathfinder 

AVHRR, version 5 [20]) is useful for estimating this 

component (Fig. 2c) [22]. A combined sampling and 

measurement error for a single observation can be 

derived (Fig. 2d), but note that in the absence of an 

observation, sampling error equals the local SST 

anomaly standard deviation. Assuming the errors in a 

grid box are uncorrelated, the error in grid box averages 

is then obtained by dividing by the square root of the 

number of observations in each grid box. These values 

can exceed 1C locally. As Figs. 2e and f demonstrate, 

the resulting error model successfully captures the 

major spatial features of Pathfinder-ICOADS 

difference. 

The distinction between random and bias errors can 

sometimes be blurred when observations from a random 

mixture of platform types with unequal biases are 

combined. For regions and periods where a single or 

small number of platforms contribute to the SST, 

estimate the common bias may remain even when 

random errors are reduced by averaging [23] and [24]. 

The availability of independent SST estimates from 

different platforms also allows estimates of uncertainties 

pertaining to each individual platform to be determined 

(e.g. [25]); note here another need for independent data. 

 

Figure 2. Effective observational error in in situ SST 

and its components: (a) random error estimate for one 

ship observation [21]; (b) actual standard deviation in 

ICOADS 1° x 1° monthly bins, 1960-2005; (c) SST 

variability within 1° x 1° monthly bins, 4 km Pathfinder 

v5 daily SST [20], 1985-2004; (d) standard error for a 

single observation in 1° x 1° monthly bins, estimated by 

combining (a) and (c); (e) standard deviation of SST 

difference between 1° x 1° monthly Pathfinder (night) 

and ICOADS, 2000-2004; (f) average ICOADS SST 

error in 1° x 1° monthly grid boxes during 2000-2004, 

estimated from a single observation error estimate and 

actual number of observations in ICOADS bins in each 

month. 



  

3.3. Sea ice and marginal ice zone SST 

For many applications, where information on fluxes of 

heat is needed, globally complete fields of SST and sea 

ice concentration (SIC) are required. Sea ice 

concentrations can be used to estimate SST values at 

high latitudes where there are few direct observations. 

Providing homogeneous fields for the last century or so 

is more challenging for SIC than for SST: the 

information content of data from different periods is 

more variable; data are less centrally organised; 

metadata are poor and independent data for validation 

are scarce. 

 

Since 1978, the SMMR/SSM/I (Scanning 

Multifrequency Microwave Radiometer/Special Sensor 

Microwave Image) series has provided detailed and 

continuous information on SIC in both hemispheres (see 

[26]). Prior to this, information on sea ice extents, much 

less on concentration, is sketchy in the Southern 

Hemisphere. Homogeneity is an essential goal because, 

for example, an atmosphere-only model which uses a 

globally complete analysis of SST and sea ice as a lower 

boundary condition will suffer spurious discontinuities 

in heat fluxes should the characteristics of the SIC field 

change suddenly. For this reason, removal of biases in 

SIC retrievals from passive microwave instruments is 

also essential. Biases arise from, for example, surface 

melt ponding in the summer months, when ponds of 

fresh water form on top of the ice, causing 

underestimation of ice concentration. 

 

In grid boxes with partial ice cover, the SST attributed 

to the open water in the grid box is also important. The 

water might be assumed to be near to its freezing point, 

but during the summer months large excursions of a few 

degrees can occur. A potential boost to our 

understanding of marginal ice zone SST has come with 

the POLEWARD project, which so far has deployed 

more than 100 drifting buoys in the Norwegian Sea and 

Barents Sea. 

 

A reanalysis of the passive microwave record for the 

last thirty years is currently underway at the 

EUMETSAT (European Organisation for the 

Exploitation of Meteorological Satellites) Ocean and 

Sea Ice Satellite Application Facility. This work will 

ascribe each pixel with an error estimate for the first 

time. Significant work has also been undertaken with 

the historical record: a collection of digitised 

operational charts from various nations has been 

assembled in the Global Digital Sea Ice Data Bank. 

Some of these extend back to the 1930s. Reconciling 

recent and historical observations and assessing the 

resultant uncertainties is an area of active research. 

3.4. Climate variability and change estimation and 

the effects of analysis methodology 

As previously stated, gridded analyses are produced by 

inferring missing data and smoothing available 

observations. The analysis methods used make 

assumptions about the statistical properties of the 

observations. These assumptions can differ significantly 

from the properties of real-world observations, e.g. the 

climate of the last 150 years is not stationary and 

observational distribution is sometimes sparse and not 

random. These deviations of the real from the ideal 

world result in errors in the gridded analyses, e.g. 

reduced trends, over-fitting of data or lack of variance. 

Figure 3. Comparison of four SST analyses, 1891-2006. 

a) Linear trends in annual mean SST anomaly and b) 

proportion of total variance explained by the trend. 

Blacked-out areas: trends are not significant at 5% 

level. 

One of the most straightforward uses of gridded SST 

analyses (e.g. COBE (Centennial in-situ Observation-

Based Estimates) SST [27], ERSST (Extended 

Reconstructed Sea Surface Temperatures) version 3 

[15], HadISST1 [28] and Kaplan SST [29]) is 

computing and interpreting their long-term trend 

patterns. Such patterns for the 116-year period 1891-

2006 are shown in Fig. 3a. Fig. 3b shows the percentage 



  

 of SST variance in this period due to the local trend. 

Blacked-out areas show where trends are not significant 

at the 5% level. 

There are similarities and differences between the trend 

patterns in each analysis, due to differences in the 

underlying observational databases, their QC and bias 

correction procedures and in the analysis methods used. 

HadISST1 and Kaplan are the most similar in terms of 

the pattern shape, if not mean value: the Kaplan analysis 

was produced under the conservative assumption of 

stationarity of the mean climate for the entire analysis 

period, while HadISST1 includes a pre-processing, 

which explicitly derives the modes of long-term 

variability, capturing global warming. Therefore Kaplan 

has uniformly less warming than HadISST1. These two 

products use slightly different observational databases, 

with similar bias corrections and similar analysis 

methods. ERSSTv3 uses a different observational 

database, different set of bias corrections and a 

somewhat different analysis method. It shows stronger 

and more uniform warming than HadISST1 and Kaplan. 

The COBE analysis also shows large and uniform 

warming. The differences between trend patterns are 

driven mostly by the observational data, QC and bias 

correction differences in the first half of the trend period 

(1891-1948): the trend patterns are more different then 

(not shown). However, in the period of better and more 

abundant data (1949-2006) the four trend patterns are 

more similar to each other (not shown). 

 

4. FUTURE OBSERVING SYSTEM NEEDS 

4.1. Adequacy and stability of the SST observing 

system 

As previously discussed, SST observations are collected 

from many different in situ platforms, including surface 

observations from ships (both VOS and research 

vessels), and moored and drifting buoys. In addition, 

measurements of the temperature of the ocean skin and 

sub-skin are made by a range of infrared and microwave 

satellite instruments, and near surface temperatures are 

obtained from oceanographic profiles. Near-surface 

temperatures (within the first few metres) from profiles 

measured by mechanical and expendable 

bathythermographs (MBTs and XBTs), conductivity-

temperature-depth instruments (CTDs), Argo floats and 

gliders, are beginning to be augmented by higher 

vertical resolution SST measurements from a subset of 

Argo floats. This information on near surface 

temperature structure will allow us to better reconcile 

SST from in situ and satellite platforms. We note 

though, that while Argo is essential for studies of ocean 

heat content, understanding sea level changes and the 

vertical profile of the near-surface ocean, it could not be 

a substitute for other in situ SST measurements with its 

current, relatively low, sampling frequency. A 

combination of VOS, drifting buoys (with and without 

thermistor chains) and Argo floats is needed. 

Whilst this multitude of observational sources makes 

SST one of the best observed ocean parameters, the 

diversity and evolution of the balance and quality of 

those observational sources means that the potential for 

data inhomogeneity is great (see Section 2.1). In situ 

SST is measured at many different depths, which are 

often unknown. Metadata describing observing 

method and depth is needed to understand and 

reconcile those differences, which are due to physical 

effects, such as diurnal variability (warming and 

subsequent cooling of the ocean surface controlled by 

solar heating and wind), and depth differences, from 

those which are biases in an individual platform or 

instrument. Satellite instruments produce a much higher 

density of observations than in situ platforms. However, 

the number of satellite instruments is much smaller than 

the number of in situ platforms. Thus, biases in satellite 

retrievals due to cloud and aerosol contamination (for 

infrared retrievals) and land and rainfall contamination 

(for microwave retrievals) can have a large, systematic 

impact on both the retrievals and the gridded analyses 

that use them. Furthermore, satellite instruments may 

drift from their prescribed orbit or calibration, degrading 

their accuracy. Reference [18] addresses many of these 

satellite-bias problems using comparisons to in situ data. 

However, such adjustments cannot be substantially 

improved without reducing the in situ bias, which 

requires more in situ metadata. 

To remove systematic biases from the SST observing 

system, it is important to compare observations from 

different sources, both within and between platform 

types. Nearby observations are needed to ensure high 

data quality. This apparent redundancy in the 

observing system is necessary for the generation of 

accurate global gridded datasets and analyses (coupled 

importantly with redundancy in data management and 

archival systems). Routine comparisons between SST 

measured by surface platforms to that from 

oceanographic profiles would also help to determine 

relative biases in these different data types and could 

prevent future high profile problems with new 

instrumentation, such as those uncovered by [30].  

Confidence in observed SST is also increased by its 

consistency with an independent quantity: marine 

surface air temperature from VOS. In general, co-

incident information on other atmospheric variables 

is helpful for understanding and removing biases, which 

depend on environmental parameters. Such information 

is available in ICOADS, which brings together data 

from a diversity of platform types and limited available 

historical metadata (e.g. [31]), and in various GHRSST 

data sets. 



  

Accuracy requirements for SST (and other variables, see 

http://www.wmo.int/pages/prog/sat/Databases.html) 

vary widely both within and between user communities, 

and between different assessments. For climate 

purposes, an accuracy of between 0.1 and 0.5C on grid 

resolutions of 1-500km and 1-30 days is specified 

between the different assessments. This wide range of 

stated needs makes assessing the adequacy of the 

observing system rather challenging. We recommend 

that databases of accuracy requirements are 

rationalised. 

Here we use fields of random synthetic observations 

with statistical characteristics equal to those of VOS and 

drifting buoys during the period August 2002-December 

2007 to evaluate how many platforms and observations 

are required in any grid box to satisfy certain accuracy 

requirements. We use a general grid box, without 

defining its resolution in space and time. However, as 

sampling error (for one observation) varies from 

location to location with the variability of the field, we 

calculate results for different sampling errors. Fig. 4 

summarises the results and provides a graphical “look 

up table” for various accuracy requirements.  

As an example, if the requirement on a gridded average 

were “better than 0.1°C” and the sampling error in that 

grid box were 0.8°C for one observation, then 5 buoys 

making at least 30 observations each is one way to meet 

that requirement (as is 10 buoys making 15 

observations, etc.). The other panels are used to inform 

less stringent requirements. The information is 

displayed in this way, because the results are strongly 

dependent on the estimate of sampling error used. Also, 

the shaded areas give a number of possible deployments 

that might be used to achieve the same objective, so 

displaying in map form is not straightforward. Note that 

the errors displayed in Fig. 2 are a combination of both 

sampling and measurement error, so would give a 

pessimistic view if combined directly with Fig. 4, which 

requires that we know the sampling error only (the 

measurement errors are included already following the 

method of [24]). 

Note that it is not possible to meet the 0.1°C accuracy 

with VOS observations with error characteristics typical 

of the VOS fleet between 2002 and 2007. However, 

high accuracy can be achieved in VOS SST 

measurements without high costs [32] and exemplary 

deployments should be replicated. 

Figure 4. Number of platforms and observations needed 

within any grid box in order to satisfy different 

accuracy requirements. The top panel shows the number 

of buoys and number of observations required to ensure 

that the probability that the grid box error exceeds 

0.1°C is less than one third. Shading indicates how the 

number of buoys and observations varies depending on 

the sampling error of the particular grid box - more 

highly variable regions will have larger sampling 

errors. See text for an example. Accuracy requirements 

are: better than 0.1°C (top); better than 0.2°C (second 

row); better than 0.3°C (third row) and better than 

0.5°C (bottom). Left: requirements for buoys; right: 

requirements for ships. 

The desirable features of a surface marine observing 

system for SST include a large number of 

observations with known (preferably high) data 

quality and adequate sampling in space and time. In 

addition, it is desirable to have a large number of 

identifiable platforms with documented 

measurement methods and sufficient metadata; 

http://www.wmo.int/pages/prog/sat/Databases.html


  

ongoing monitoring and analysis of data quality (see 

GCOS climate monitoring principle 4); a wide range of 

information on co-incident environmental 

parameters; consistency with (or quantifiable 

differences from) past observations; and feedback of 

monitoring and analysis results to observing system 

operators. Data that include this range of features can 

be more fully analysed and adjusted for bias, and will 

lead to improved gridded SST data sets and analyses for 

climate studies. 

 

4.2. The need for both in situ and satellite observing 

systems 

Accurate global satellite infrared SST measurements 

began in 1981 while global microwave measurements 

began in 2002. The latter have better coverage while the 

former have better resolution. Both have far better 

coverage than in situ observations.  

In situ observations allow historical gridded analyses of 

large spatial (typically ≥ 2°) and temporal scales 

(typically ≥ 1 month). In addition, other variables (e.g., 

winds, air temperature, humidity) are often observed 

simultaneously from in situ platforms (mostly ships). 

Satellite observations allow much higher spatial and 

temporal resolution gridded analyses. In gridded 

analyses, especially those using multiple satellite 

instruments, the direct contribution of in situ 

observations is usually overwhelmed. Furthermore, 

some analysis schemes have chosen one satellite 

instrument as a standard and eliminated the direct use of 

in situ observations. However, in most cases in situ 

data play a critical role in the ongoing calibration 

and validation of satellite algorithms for climate-

quality gridded SST analysis products. 

The availability of high temporal resolution SST 

observations from in situ and satellite sources has also 

enabled better understanding of high resolution physical 

processes. An example is the diurnal variability and 

vertical profile of temperature in the top few metres of 

the ocean [33], although here better integration of 

surface and sub-surface observations is required. 

 

4.3. The need to maintain long enough overlap 

between satellite missions 

GCOS monitoring principle number 12 says: “A 

suitable period of overlap for new and old satellite 

systems should be ensured for a period adequate to 

determine inter-satellite biases and maintain the 

homogeneity and consistency of time-series 

observations.” Evidence of this need abounds in the 

literature, perhaps most famously for observations of 

tropospheric temperatures from the series of (Advanced) 

Microwave Sounding Units ((A)MSU) on the NOAA 

(National Oceanic and Atmospheric Administration) 

polar orbiting satellites (e.g. [34]). Because of 

differences between satellite instruments, their trends 

took a long time to reconcile to better-known surface 

temperature trends.   

Each time a new satellite replaces an old satellite, a step 

discontinuity is introduced into the record. Over a 

number of missions these discontinuities, exacerbated 

by drifts in the satellite calibration, constitute a random 

walk that adds red noise to the merged record. A long 

overlap between sensors minimises this and allows a 

self-consistent, independent record to be created. Short 

overlaps make it difficult to estimate the relative biases. 

The length of suitable overlap depends on the 

characteristics of each sensor. Appropriate overlap 

periods for new sensors should be calculated as part of 

mission design. 

 

Such problems can be corrected using other instruments 

– in situ or satellite – at the cost of their independence. 

Independent records are desirable because they decrease 

uncertainty, thereby increasing confidence in all 

products and making failures easy to trace; they 

contribute to a robust network that is not overly reliant 

on any single component. 

 

4.4. Requirements for future sea ice observations 

 

There are many data sets of passive microwave 

retrievals of SIC, but none are globally validated. For 

users to have an understanding of retrieval accuracy in 

different locations, passive microwave data sets need 

global validation and retrieval uncertainties for each 

pixel. 

Passive microwave retrievals of SIC constitute a 30-

year record, albeit with serious shortcomings, e.g. 

under-estimation due to melt ponds on the surface of the 

ice and due to thin ice. Synthetic Aperture Radar (SAR) 

imagery is widely thought to be the most accurate 

source of sea ice information and is used by operational 

ice services in the drafting of their charts. Yet for 

studies of climate variability and change, a record of sea 

ice changes using SAR data is not available. This is 

partly because of data cost and partly because no 

automatic retrieval of sea ice concentration from SAR 

imagery is yet possible. The best we have at present is 

an analyst’s subjective interpretation of SAR imagery in 

the form of an ice chart. While we have very high-

resolution images of SST, we do not have free and easy 

access to interpreted high-resolution sea ice images 

from SAR. It should be possible for SAR data 

providers to derive a product for climate use. 

 

4.5. Need for further recovery and interpretation of 

historical observations and metadata 

The present-day network of VOS and buoys provides 

frequent and widespread coverage of the world's oceans. 

But the coverage of the historical archive, on which we 



  

rely for estimating, understanding and predicting 

climate change, should be improved to the maximum 

extent possible. The number of observations in 

ICOADS, and the fraction of ocean surface from which 

observations are available, both decrease steadily as we 

go back in time (with additional temporary reductions 

during the two world wars). Many early historical VOS 

sources were digitised decades ago. Due to the 

limitations of early computer technology they often lack 

adequate metadata (including ship identification) and 

may have been subject to undetected data processing 

errors [35]. With the existing archive, we cannot 

reconstruct even global average SST changes before 

about 1850, and reliable regional reconstructions are 

even shorter.  

 

Platform and instrumental metadata for VOS have been 

regularly collected by WMO since 1955 [31]. Historical 

metadata from drifting and moored buoys, and other 

automated platform types, starting in the 1970s may still 

exist at widely dispersed data centres, possibly at risk of 

media degradation or other loss. International efforts to 

systematically consolidate and archive these important 

metadata are only just beginning through the Joint 

WMO-IOC Technical Commission for Oceanography 

and Marine Meteorology (JCOMM). 

 

Improving our historical reconstructions of surface 

marine climate is a high priority. Recently released data 

for 1908-1958 from the Twentieth Century Reanalysis 

Project ([4] and [36]) extend the global atmospheric 

record, reanalyzed by state-of-the-art General 

Circulation Models, to the century scale. This product 

and its ongoing extension for 1891-2002 would not have 

been possible without a recent significant international 

effort on historical data inventory, digitization, and 

exchange. However, an extension of this activity for 

1840s-2011, the NOAA-CIRES (Cooperative Institute 

for Research in. Environmental Sciences) Surface Input 

Reanalysis for Climate Applications, is still 

significantly restricted in its quality and scope by the 

shortage of historical observations.  

 

There is much potential for improving the number and 

coverage of historical observations and metadata, but 

this requires international collaboration on data recovery 

and QC. Recent and ongoing initiatives [37] include: 

recovery of U.K. Royal Navy observations for 1939-47; 

Norwegian and international polar exploration results 

for 1867-1930; the German Maury collection for 1845-

67; English East-India Company records for 1790-1834 

and the Global Oceanographic Data Archaeology and 

Rescue project [38]. Continuing work to digitise 

historical observations and metadata (from ships, 

buoys and oceanographic profiles), and blend them 

(using standard formats and improved quality 

controls) into ICOADS will result in much more 

detailed and reliable estimates of marine climate 

change and variability. 

 

4.6. Further developments in analysis methodology 

The GCOS SST/sea ice Working Group are conducting 

a test experiment, applying all individual analysis and 

QC methodologies to common observational databases. 

This effort will result in a better understanding of the 

source of the differences between gridded analyses and 

specific recommendations for the improvement of 

gridded analyses, in addition to those made here. 

 

Different analysis techniques are currently applied to 

sparsely sampled ship and buoy databases (e.g. [28]) 

from those applied to much more abundant satellite data 

(e.g. [18]). Reduced-space analysis methods, using 

covariance estimates encapsulated by Empirical 

Orthogonal Functions (EOFs), based on in situ data 

produce relatively low resolution fields, leave 

permanent “holes” in the locations where poor data 

sampling makes this method of covariance estimation 

unfeasible, and do not explicitly account for the long-

term variability (trends) in the data [39]. Because of 

users’ demand, the HadISST, ERSST, and COBE 

products use additional heuristic approaches in addition 

to the reduced-space analysis to get around these 

problems. More holistic methodological approaches 

should be developed, which cope better with real-

world deviations from theoretically ideal 

observations. This would result in better gridded 

analyses and better understanding of their features. They 

should also explicitly address the uncertainty in 

covariance estimates used (as in [40]). 

 

As applications of gridded SST analyses become more 

and more sophisticated, more reliable and user-

friendly representations of uncertainty should be 

provided. For example, this could be achieved by 

representing analysis uncertainty via an ensemble of 

equally probable realizations of the analysis, whose 

mean would be equal to the best-estimate analyzed 

fields currently produced and whose spread would 

correspond to the uncertainty of the analysis, simulating 

covariances of the analysis error as well [41]. This is a 

more user-friendly option than providing analysis 

standard errors. 

 

4.7. Further developments in bias corrections 

In the past, the evaluation of bias in historical SSTs has 

typically been done using aggregated data sets, i.e. not 

separated according to measurement type, with the bias 

adjustment then applied to the aggregated data. This 

creates problems when new historical data are digitized 

and added to the database since the new data may have 

been collected using different methods. To minimize 

this problem in the future, multiple independent sets of 



  

bias adjustments and their uncertainties should be 

computed for individual homogeneous components 

of the historical (and contemporary) observing array 
(e.g. [16]) and an adjustment assigned to each individual 

observation. When new data are digitized, their bias 

could be separately evaluated using available metadata. 

 

Without good metadata, an understanding of the 

evolution of the observing array is just educated 

guesswork. Whenever new instrumentation is deployed, 

therefore, one of the most important considerations is 

the provision of comprehensive, accurate and 

accessible metadata (as required by GCOS Climate 

Monitoring Principle number 3). For example, drifting 

buoys currently dominate the SST observing array, but 

the accessibility of good metadata on these instruments 

is poor. Metadata are currently accessible for just a 

subset of buoys and do not include important 

information such as measurement depth, which is used 

to understand the way different platforms observe 

diurnal variability in SST. Metadata for ships and 

moored buoys is also quite patchy (see Section 3.5 and 

[42]). While metadata including ship identification may 

be lost forever for some early historical sources, 

withholding ship call signs owing to commercial and 

security concerns is a recent development (~2007, see 

also [43]). This makes proper estimation of bias and 

uncertainty impossible, because without the call sign the 

link to detailed observational metadata cannot be made. 

Therefore, withholding ship call signs must stop or be 

circumvented. 

 

The calibration of expendable instrumentation such as 

drifting buoys is also not checked or monitored directly. 

Drifting buoys and their future equivalents should 

be randomly captured to allow any shift in their 

calibration to be quantified in order to provide better 

understanding of the evolution of their accuracy through 

their lifetime. More diagnostic information should also 

be transmitted in real time. 
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