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1. ABSTRACT 

One driving factor improving the resolution of 
oceanographic sampling has been the observation of fine 
structure in the ocean. As oceanographers improve their 
sample resolution, the finer patterns that are discovered 
lead to a better understanding (and new questions) about 
dynamic processes in the ocean. To date, current 
technologies available for the study of many 
zooplankters remain limited in comparison to the spatial-
temporal resolution and data acquisition rate available 
for physical oceanographic measurements, especially for 
the relatively rare meso-zooplankton. To overcome these 
challenges, we have built a towed, very high resolution 
digital imaging system capable of sampling water 
volumes sufficient for accurate quantification of meso-
zooplankton in situ. The images are high quality, 
enabling clear identification of meso-zooplankters (e.g. 
larvaceans, gelatinous zooplankters, chaetognaths, larval 
fish), often to family or genus level. However, the efforts 
directed toward high speed and high-resolution imaging 
have the potential to create a bottleneck in data analysis. 
To address this problem we also have developed efficient 
algorithms to detect multiple regions (organisms) of 
interest (ROI) automatically, while filtering out noise 
and out-of-focus organisms, and simultaneously classify 
the detected organisms into pre-defined categories using 
shape and texture information. Here we demonstrate the 
current design, image quality, image analysis approach 
and example data analyses as an overview of the system 
capabilities. 
 

2. INTRODUCTION 

Biological sensor development, especially for whole 
organisms, has lagged behind that of physical and 
chemical sensors. Yet, with advancing plans for 
integrated ocean observing systems (IOOS), there is a 
critical need for sensors capable of autonomously 

gathering biological data relevant to ecosystem health 
and resource assessment. This need is clearly outlined in 
the Ocean Research Priorities Plan (ORPP), and 
implementation planning of the Ocean Observation 
Initiative (OOI). Here we describe the development of a 
plankton sensing system capable of quantifying meso-
plankton via very high resolution imagery, coupled with 
an advanced, automated image analysis system. This 
sensor system, ISIIS (In Situ Ichthyoplankton Imaging 
System) has the potential to significantly enhance the 
spatial and temporal resolution of plankton sampling, 
while reducing time and cost of biological data 
acquisition, processing and analysis [4]. 

We have built a towed, very high-resolution digital 
imaging system capable of sampling water volumes 
sufficient for accurate quantification of meso-
zooplankton in situ. We combined various state-of-the-
art digital imaging and computer technologies (e.g. 
incorporating machine vision technology) with a 
shadowgraph light scheme. The images are high quality, 
enabling clear identification of meso-zooplankters (e.g. 
larvaceans, gelatinous zooplankters, chaetognaths, larval 
fish), often to family or generic level. Simultaneously, 
we have initiated work on image analysis of the digital 
data from this system – developing automated extraction 
of Regions of Interest and recognition of the detected 
organisms using shape and texture information. 

3. ISIIS DESCRIPTION 

This camera system utilizes a high-resolution line-
scanning camera with a Light Emitting Diode (LED) 
light source, modified by plano-convex optics, to create a 
collimated light field to back-light a parcel of water (Fig. 
1). The imaged parcel of water passes between the 
forward portions of two streamlined pods (UW 
housings), and thereby remains unaffected by turbulence. 
The resulting very high-resolution image is of plankton 
in their natural position and orientation (see Figure 2). 



Figure 1. Light scheme using shadowgraph technique. 
Light passes through plano-convex lenses thereby 
establishing a pseudo-collimated light beam refocused by 
a second field lens before it impinges on an imaging lens. 
The advantages of this approach over other lighting 
techniques include: High depth of field (40+ cm), 
telecentric image (magnification level not affected by 
distance from object to the lens), and very sharp outlines 
of organisms and internal structures (facilitate automated 
recognition). 
 

When a sufficient volume of water is imaged this way, 
quantification of density and fine scale distribution is 
possible. 
3.1 Lighting - The focused shadowgraph technique (Fig. 
1) allows for a long depth of field not achievable with 
other lighting techniques such as dark field or simple 
backlighting [1], [8]. Since the light rays are directed 

toward the imaging sensor and not reflecting off the 
imaged subject, the intensity of light required is 
extremely low compared to any other lighting technique. 
This avoids the use of bright light sources that may deter 
organisms away from the imaging area.  
3.2 Camera - For imaging, we used a line-scan camera 
(DALSA Piranha 2). These cameras create a continuous 
image, differing from sequential flash or video images 
that are successive and may have gaps or overlap. Hi-
speed scanning rates of the line-scan camera also allow 
for high-resolution images. The camera system used in 
our prototype had a vertical resolution of 2048 lines and 
a 36 KHz scanning rate. This combination provided for a 
continuous visual field that was approximately 14 cm tall 
with a 20-40 cm depth of field depending upon the size 
of the point source of light used. Thus, when towing the 
instrument at 5 knots (2.5 m s-1), the volume of water 
imaged every second was ca. 70-140 liters (14 cm X 40 
cm X 250 cm). As a typical 1 m2 plankton net filters ca. 
0.75 m3 s-1 (at a tow speed of ~ 0.75 m s-1), our system 
images close to 10-15% of the volume filtered by a net, 
which is greater than an order of magnitude 
improvement over other imaging systems. Moreover, 
pixel resolution is approximately 68X68 µm, resulting in 
a very high-resolution image. 
In collaboration with the ocean engineering firm, 
Bellamare, LLC, we designed and constructed a self-
undulating, towed vehicle, including underwater 
housings for the camera and light system.  We then 
utilized fiber-optic cable to carry the signal from the 
system to the surface enabling real-time storage and 
initial processing via a high-throughput computer system 
capable of handling the high data transfer rates (up to 
140 MB s-1). 

4. IMAGE ANALYSIS   

This imaging system produces very high-resolution 
imagery at very high data rates necessitating automated 
image analysis. As we are interested in the identification 
and quantification of a large number of organisms, 
sometimes morphologically similar to each other, we 
propose to develop an automated system for detection 
and recognition of organisms of interest using computer 
vision tools. The method aims to: 1) detect multiple 
regions (organisms) of interest (ROI) automatically, 
while filtering out noise and out-of-focus organisms, and 
2) simultaneously classify the detected organisms into 
pre-defined categories using shape and texture 
information.  
What differentiates our effort from published methods 
and publicly available software is that we aim at 
analyzing entire raw images as they are acquired by 
ISIIS, containing multiple candidate specimens, which 

	  
Fig 2. ISIIS example images. Images taken from both 
low latitude (clear waters) and high latitude (highly 
productive waters). From left to right: Larval flatfish 
(~6 mm TL), pelagic polychaete (Tomopteris sp. ~ 6 
mm; note also in this figure a small larvacean and 
multiple diatoms), ctenophore, (~ 20 mm) larval wrasse 
(Thalassoma bifasciatum; ~ 7 mm)). Next row: pelagic 
shrimp (~ 15 mm), larval flatfish (Bothus sp. ~ 6 mm), 
larvacean (appendicularian – Oikiopleura sp.; ~ 2 mm), 
urchin pluteus (~1 mm), copepod (~ 2 mm).  



makes our system fully automatic: from data capture to 
the storing of recognition results. In contrast, existing 
methods assume the specimens have already been 
precisely segmented, or aim at analyzing images 
containing single specimens (extraction of their features 
and/or recognition of specimens as single targets in-focus 
in small images. The term "precisely" is the key 
difference and the novelty of our overall approach. We 
start with the assumption that the typical scenario will be 
"imperfect segmentation" (i.e. either partial or over-
segmentation).  

This software implements a set of methodologies for 
detecting plankton objects in cluttered images and 
recognizing their types. The functionalities of the 
developed system are divided into three major 
procedures: 

1) First, a low-level image segmentation 
algorithm is applied to extract salient objects 
from a set of input cluttered images. The 
employed methodologies are designed to 
effectively handle images containing multiple 
objects as well as significant levels of noise. 

2) Subsequently, a set of low-level image 
descriptors (features) are computed, so that each 
extracted blob is represented as a feature vector 
of characteristic image features. Here, the 

extracted feature vectors include shape 
histograms, blob solidity, Hu moments up to 
third order, Fourier descriptors, and the circular 
projection descriptors defined in [6]. 

3) Finally, a set of advanced machine learning 
methodologies are used to select those of the 
extracted objects that correspond to plankton 
images, and determine their most likely types, 
choosing from a set of predefined plankton 
categories previously learned from the system. 
The core functionality (of recognizing whether 
an extracted object corresponds to a plankton 
image or not, and what is the type of the 
detected plankton) of this final component of 
the developed system, is based on multiclass 
SVM classifiers [2]. 

A significant issue in object detection and recognition 
systems is the problem of over-segmentation, i.e. when a 
single object image is segmented into two or more 
fragments. To tackle this issue, on top of the employed 
GP-based (Genetic Programming) classifiers, we deploy 
an object over-segmentation rectification methodology 
based on conditional random fields (CRFs) [5]. 
Conditional random fields are graph-based 
discriminative classification models, with a wide range 
of applications in the computer vision domain. Here, 
CRFs are employed to detect which extracted objects 

	  

Figure 3. Example of steps taken during segmentation, extraction and eventual reconstruction of 
over-segmented objects and exclusion of noise.  See [3], [7], [9]. [10], for details on the methods 
used in this software. 



comprise segments of a single, over-segmented object, 
hence allowing for the model to attain a low final over-
segmentation rate (see Fig. 3). In our system, the nodes 
of the CRF graph structure are taken as the extracted 
blobs in an input image. The unitary potentials of the 
model are based on the probabilities obtained by the 
trained GP multiclass classifiers for each blob, whereas 
the pairwise potentials are taken as the multiclass GP-
induced probabilities of two concatenated “neighboring” 
objects. As neighboring objects in an image are regarded, 
objects with high similarity are joined, in the sense 
implied by application of a k-NN algorithm [2]. 
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