Assessment of the current ocean carbon sink and its implications for climate change and mitigation

Arne Körtzinger

IFM-GEOMAR Kiel, Germany

Most relevant CWPs for this topic:

- Surface pCO₂ (VOS) Network: Schuster et al.
- Repeat Hydrography: Fukasawa/Hood et al.
- OceanSITES: Send et al.
- CO₂ sensors: Byrne et al.
- Oxygen-ARGO: Gruber et al.

Leibniz-institut i'n Meenesaissenschaften an der Jeiversitik Kiel

The canonical picture of the anthropogenically perturbed global carbon cycle for the 1990s

IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

We are not talking peanuts here...

Oceanic sink = 2.2 Gt C yr⁻¹ = 22 Mt CO₂ d⁻¹ = 15,000 t CO₂ hr⁻¹ = 250 t CO₂ s⁻¹

ARCTIC PRINCES

The global fleet of liquid gas tankers (~150 ships with a capacity of ~120.000 m³ each*) can just about carry the daily CO₂ production!

At a 10 day roundtrip we would need ten times the existing global fleet to dump 2.2 Gt C yr⁻¹.

Iconic Map I: Global net air-sea CO₂ flux (= anthropogenic + pre-industrial flux)

Climatological picture based on 3 million measurements taken during 1970-2007 (referenced to year 2000)

Takahashi et al. (2009), DSR II 56, 554-577.

Iconic Map I: "Voluntary Observing Ship" network that forms its basis (CWP: Schuster et al.)

Iconic Map I: "Voluntary Observing Ship" network that forms its basis (CWP: Schuster et al.)

Benjamin Pfeil, CarboOcean

Iconic map II: Repeat-hydrography network that forms its basis (CWP: Mukasawa et al.)

How to detect decadal change against in a system with high internal variability?

Hawaii Ocean Time Series (ALOHA)

Dore et al. (2009), PNAS 106, 12235-12240.

LeQuéré et al. (2007), Science 316, 1735-1738.

Table 1. Biotic responses to sea surface warming and ocean carbonation/acidification and their feedback potential to the climate system

Feedback process	Sign of feedback	Sensitivity	Capacity	Longevity
Responses to ocean warming				
Nutrient supply to oligotrophic ocean		+++	± 0	++
Nutrient supply to HNLC areas	negative	++	++	+++
Nutrient utilization efficiency	negative	++	++	+ + +
Nutrient inventory	positive		++	+ + +
Organic matter remineralisation	positive	according to accord decovergenetion?		
Responses to ocean acidification	Responses to ocean deoxygenation?			
Calcification	negative	$+^{\dagger}$	+	+‡
Ballast effect	positive		+++	+ + +
Stoichiometry	negative	$++^{+}$	++	++
Extracellular organic matter production	negative	$++^{+}$	+++	+
Nitrogen fixation	negative	$++^{+}$	+	\$

Responses are characterized with regard to feedback sign, sensitivity, capacity, and longevity by using best guesses; we use ± 0 for negligible, + for low, ++ for moderate, and +++ for high. Empty boxes indicate missing information/ understanding.

[†]Available information mainly based on short-term perturbation experiments.

[‡]Potential for adaptation presently unknown. HNLC, high nutrient, low chlorophyll.

Riebesell, Körtzinger, and Oschlies, PNAS, in press.

Keeling, Körtzinger, and Gruber, Annu. Rev. Mar. Sci., in press.

ARGO - an opportunity not to be missed by the carbon community (CWP: Gruber et al.)

We are ready to add an oxygen component to ARGO

Are we also there with CO₂ sensor technology? - Not really ... (CWP: Byrne et al.)

Sea-Air fluxes of CO₂ and O₂ in the eastern tropical Atlantic: a combined atmosphere-ocean perspective

We need to

- continue (and perhaps expand) the VOS-based surface pCO₂ network,
- continue the repeat hydrography pre
- continue the repeat hydrography pre-continue the existing all this be sustained pression of the state of the sustained set of the sust continue the existing ones
- Improve CO₂ sensor technology to encompass autonomous observation platforms (e.g., float & gliders)

ICOS Vision:

To have in place by 2014 an operational network of observation platforms covering Europe and the North Atlantic to provide daily regional greenhouse gas budgets at 10 km resolution

- ~40 ecosystem stations
- ~40 atmospheric stations
- ~10 VOS lines
- ~ 7 oceanic/coastal time-series site
- central facilities for analyses, calibration and quality control
- ~ long term operation (>20 years)

ICOS – Integrated Carbon Observation System (ESFRI)

